gnssrefl

Kristine M. Larson and GNSS-IR community

Feb 07, 2024

9

Installation

Understanding

Files, Formats, Frequencies

Quick Links to the Code

Example Use Cases

Community

2023 Short Course on GNSS-IR

2024 Short Course on GNSS-IR for Water Level Measurements

What is a good GNSS Reflections Site?

10 API documentation

Python Module Index

Index

CONTENTS:

25
39
41
43
45
47
49
53

197

199

gnssrefl

Date: Feb 07, 2024

gnssrefl is an open source python-based software package for GNSS interferometric reflectometry (GNSS-IR).

CONTENTS: 1

gnssrefl

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

You can access this package via Jupyter notebooks, Docker containers, or traditional github/pypi package installation.

1.1 Jupyter Notebooks

Install Instructions

1.2 Docker Container

Install Instructions

1.3 Local Python Install

YOU MUST BE RUNNING python version 3.9 or lower.

For installation with github/pypi, the setup requires a few system dependencies: gcc and gfortran. If you are using
linux then simply type

apt-get install -y gcc

and

apt-get install -y gfortran

in your terminal (or yum install -y gcc-gfortran).

If you are using a MacOS then you will need to install xcode. First, in your terminal, check first to see if you already
have it:

xcode-select -p

If it is installed, it should return a path. If it is not installed then run
xcode-select —install

This should install gcc. You can check if you have gcc by typing
gee —version

You can check to see if you have gfortran by typing

gfortran —version

If you do not have gfortran, then you can use homebrew to install (brew install gfortran).

https://gnssrefl.readthedocs.io/en/latest/pages/jupyter_notebook_instructions.html
https://gnssrefl.readthedocs.io/en/latest/pages/docker_cl_instructions.html

gnssrefl

1.3.1 Environment Variables

You should define three environment variables:

* EXE = where various executables will live. These are mostly related to manipulating RINEX files.

* REFL_CODE = where the reflection code inputs (SNR files and instructions) and outputs (RH) will be stored

(see below). Both snr files and results will be saved here in year subdirectories.

* ORBITS = where the GPS/GNSS orbits will be stored. They will be listed under directories by year and sp3
or nav depending on the orbit format. If you prefer, ORBITS and REFL_CODE can be pointing to the same

directory.

If you are running in a bash environment, you should save these environment variables in the .bashrc file that is run
whenever you log on.

If you don’t define these environment variables, the code should assume your local working directory (where you
installed the code) is where you want everything to be (to be honest, I have not tested this in a while). The orbits, SNR
files, and periodogram results are stored in directories in year, followed by type, i.e. snr, results, sp3, nav, and then by
station name.

1.3.2 Direct Python Install

If you are using the version from gitHub:

You may want to install the python3-venv package apt-get install python3-venv
apt-get install git

git clone https://github.com/kristinemlarson/gnssrefl

cd into that directory, set up a virtual environment, a la python3 -m venv env
activate your virtual environment source env/bin/activate

pip install wheel (we are working to remove this step)

pip install .

from what I understand, you should be able to use pip3 instead of pip

so please read below or type installexe -h

1.3.3 PyPi Install

make a directory, cd into that directory, set up a virtual environment, a la python3 -m venv env
activate the virtual environment, source env/bin/activate

pip install wheel (we are working to remove this step)

pip install gnssrefl

from what I understand, you should be able to use pip3 instead of pip

Please read below or type installexe -h

Chapter 1.

Installation

gnssrefl

1.3.4 Non-Python Code

installexe should download and install two key utilities used in the GNSS community: CRX2RNX and gfzrnx. It
currently works for linux, macos and mac-newchip options. If you are using docker or Jupyter notebooks you do not
need to run this.

‘We no longer encourage people to use teqc as it is not supported by EarthScope/UNAVCO. We try to install it in case
you would like to use it on old files.

1.3.5 Homework 0: Test installation.

For some of the shortcourses, we compiled a Homework 0 that walks a new user through a few simple tests for validating
successful gnssrefl installation.

1.3. Local Python Install 5

https://gnssrefl.readthedocs.io/en/latest/homeworks/homework0.html

gnssrefl

6 Chapter 1. Installation

CHAPTER
TWO

UNDERSTANDING

gnssrefl is an open source/python version of my GNSS interferometric reflectometry (GNSS-IR) code.

2.1 Goals

The goal of the gnssrefl python repository is to help you compute (and evaluate) GNSS-based reflectometry parameters
using standard GNSS data. This method is often called GNSS-IR, or GNSS Interferometric Reflectometry. There are
three main sections:

¢ Translation: Use either [rinex2snr] or [nmea2snr] to translate native GNSS formats to what gnssrefl needs. The
output is called a SNR file.

¢ [quickLook] gives you a quick (visual) assessment of a SNR file without dealing with the details associated with
gnssir. It is not meant to be used for routine analysis. It also helps you pick an appropriate azimuth mask and
quality control settings.

* [gnssir] computes reflector heights (RH) from SNR files.

There are also various ufilities you might find to be useful. If you are unsure about why various restrictions are being
applied, it is really useful to read Roesler and Larson (2018) or similar. You can also watch some background videos
on GNSS-IR at youtube.

2.2 Philosophy

In geodesy, you don’t really need to know much about what you are doing to calculate a reasonably precise position
from GPS data. That’s just the way it is. (Note: that is also thanks to the hard work of the geodesists that wrote the
computer codes). For GPS/GNSS reflections, you need to know a little bit more - like what are you trying to do? Are
you trying to measure water levels? Then you need to know where the water is! (with respect to your antenna, i.e.
which azimuths are good and which are bad). Another application of this code is to measure snow accumulation. If
you have a bunch of obstructions near your antenna, you are responsible for knowing not to use that region. If your
antenna is 10 meters above the reflection area, and the software default only computes answers up to 6 meters, the code
will not tell you anything useful. It is up to you to know what is best for the site and modify the inputs accordingly. I
encourage you to get to know your site. If it belongs to you, look at photographs. If you can’t find photographs, use
Google Earth. You can also try using my google maps web app interface.

https://link.springer.com/article/10.1007/s10291-018-0744-8
https://www.youtube.com/channel/UCC1NW5oS7liG7C8NBK148Bg
https://gnss-reflections.org/geoid?station=smm3

gnssrefl

2.3 Reflected Signal Geometry

To summarize, direct (blue) and reflected (red) GNSS signals interfere and create an interference pattern that can be
observed in GNSS Signal to Noise Ratio (SNR) data as a satellite rises or sets. The frequency of this interference
pattern is directly related to the height of the GNSS antenna phase center above the reflecting surface, or reflector
height RH (purple). The primary goal of this software is to measure RH. This parameter is directly related to changes
in snow height and water levels below a GNSS antenna. This is why GNSS-IR can be used as a snow sensor and tide
gauge. GNSS-IR can also be used to measure soil moisture, but the code to estimate soil moisture is not as strongly
related to RH as snow and water.

. / GNSS Signals
transmitted at L-band

GPS Antenna -

t & VW - 7

Reflector ~ X" The direct signal interferes

Height D ~ with the reflected signal,

- e creating interference

* - patterns (shown in the inset)

~ s in SNR data that are used to

s A back out the Reflector
p Height.

This code is meant to be used with Signal to Noise Ratio (SNR) data. This is a SNR sample for a site in the the northern
hemisphere (Colorado) and a single GPS satellite. The SNR data are plotted with respect to time - however, we have
also highlighted in red the data where elevation angles are less than 25 degrees. These are the data used in GNSS
Interferometric Reflectometry GNSS-IR. You can also see that there is an overall smooth polynomial signature in the
SNR data. This represents the dual effects of the satellite power transmission level and the antenna gain pattern. We
aren’t interested in that so we will be removing it with a low order polynomial (and we will convert to linear units on
y-axis). After the direct signal polynomial is removed, we will concentrate on the rising and setting satellite arcs. These
are shown in red.

8 Chapter 2. Understanding

gnssrefl

Marshall L2C GPS SNR
I

55 T T
Total Signal

50 F * Primarily Reflected Signal | _|
N 45 .
-
m
O 40 -

35

30 | | | 1 1 |

3 4 5 6 7 8

Hours (UTC)

For a more dynamic example, look at these SNR data from Kachemak Bay

Once the direct signal is removed (and units changed), you will have a dataset as shown below. The x-axis is now in
sine(elevation angle) instead of time, as this is the easiest way to analyze the spectral characteristics of the data. Below
the SNR data is the periodogram associated with it. This periodogram is what allows us to estimate the reflector height
of the antenna.

GPS SNR Data with Direct Signal Removed

60 —

volt/volt
o

&)
o
T
|

_60 | | | | | | | |
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sine(elevation angle)
Periodogram

20 . . : :
The code tries to < QC 1: is the peak bigger than the user chosen
determine whether this is a minimum amplitude?
o 15 significant peak QC 2: is the peak divided by the noise bigger il
geo] than the user chosen “peak to noise ratio™?
3 Noise is usually defined as the average
E 1 O L periodogram amplitude over the entire RH _
o region (thus 0-6 in this example).
=
<< 5 -
0 I I |

|
0 1 2 3 4 5 6
The reported RH is the x-value

associated with the peak. | Re€flector Height (m)

In a nutshell, that is what this code does - it tries to find the rising and setting arcs for all GNSS satellites in a datafile,
computes periodograms to find the dominant frequencies which can be related to reflector heights, and ultimately
defines environmental characteristics from them.

2.3. Reflected Signal Geometry 9

gnssrefl

There are three big issues :
1. You need to make sure that dominant frequency is meaningful (Quality Control).

2. You need to make sure that the reflected signals are actually coming from where you want them (Reflection
Zones)

3. Your receiver must be collecting data at sufficient rate so that your GNSS-IR results are not violating the Nyquist
frequency (Maximum Resolvable Reflector Height).

2.4 Quality Control

This code uses a Lomb Scargle periodogram (LSP). This type of periodogram allows the input data to be sampled at
uneven periods. The primary inputs are :

* how precise (in reflector height units) do you want the periodogram calculated at?
* how far (in reflector height units) do you want the periodogram calculated for?

In other words, how densely sampled on the x-axis will your periodogram be and how far along the x-axis will it be?
The first parameter should not set to something that makes no sense (i.e. so small the code takes forever to run). In this
code the second parameter is the max reflector height (h2). The minimum reflector height is always zero, and then the
values lower than the minimum reflector height (h1) are thrown out.

It is easy to compute a periodogram and pick the maximum value so as to find the reflector height. It is more difficult
to determine whether it is one you should trust.

* is the peak larger than a user-defined value (amplitude of the dominant peak in your periodogram)

* is the peak divided by a “noise” metric larger than a user-defined value. This noise metric is defined over a user
defined reflector height region. (peak2noise).

* is the data arc sufficiently “long” (ediff)

The amplitude and peak2noise ratio are influenced by choices you make, i.e. the elevation angle limits and the noise
region used to compute peak2 noise. And they are also influenced by the kind of experiment you do and receiver you
use.

Some examples follow:

Here we show a SNR series - outlining two different elevation angle regions in colors.

10 Chapter 2. Understanding

gnssrefl

60 —

GPS SNR Data with Direct Signal Removed

30

volt/volt
o

1

W

o
T

0.1 0.15 0.25

5 degrees

0.2

F 3

0.3
sine(elevation angle)

0.35 0.4 0.45 0.5

A

\ 4

A spectral peak computed for
this region will be smaller
than the spectral peak using
this region

Kristine M. Larson, 2023 GNSS-IR Short Course

30 degrees

We should expect that the periodograms will look different for these two regions and they are. The peak amplitudes
are larger when you only use the lower elevation angle data. But the periodograms are wider (why?).

Using elevation angles 5-25 degrees

15.01
12.51
10.0
7.5
5.0{
2.5 |-
0.0

volts/volts

reflector height (m)

volts/volts

Using elevation angles 5-15 degrees

1 2 3 4 5 6
reflector height (m)

2.4. Quality Control

11

gnssrefl

Peak2noise depends on the noise region. In quickLook it uses the same RH limits for noise as for computing the
periodogram. You can eaisly see that if you said you wanted all H values below 20 meters, the noise region is much
much larger, which means the peak value dividied by the noise values will be much much bigger.

Peak to Noise Ratio

RH 0.5 to 6 meters (original default) RH 0.5 to 20 meters

15.0 1501 |
12.5 1254
u |\
g 1001 1009 |
@ 7.57 7.5 * o
S 5.04 5.0 4 J l\ e
o] il
0.0 0.0 VAR RO R . s A
1 2 3 4 5 6 0 5 10 15 20
reflector height (m) reflector height (m)

<
<

v

Background noise will be larger here,
so peak2noise of ~6

This is an example where two different stations with different surfaces are shown. The peak amplitudes of the peri-

odograms are different. This simply means that the ice has a different dielectric constant than soil. You can verify this
using the Nievinski simulator.

12 Chapter 2. Understanding

gnssrefl

Peak amplitudes depend on the surface

Southwest Southeast

254

volts/volts

6 8 10 12 14 16 18 20
reflector height (m)

reflector height (m)

here the x-axis tells you the reflector height value is ~1.9 meters. in this case the antenna is 13 meters
The different colors are different satellites above the Greenland ice sheet
PBO H20 site - bare soil ice sheet

Here is an example where the same station is used in both periodograms - but the surface itself changed.
How is September in northern Greenland different than January?

Southwest September 27 Southwest January 1

25 A

204

154

volts/volts
volts/volts

104

| il

v
16

o |

o X
20 22 24
reflector height (m) reflector height (m)

These are for a site that measures water reflections in Thule Greenland. Why are the peaks at different x-axis values?

In addition to amplitude and peak2noise, the code uses a quality control parameter called ediff. to test whether the data
arc is sufficiently “long” in an elevation angle sense. ediff has units of degrees. If you set your desired elevation angle
limits to 5 and 20 degrees, and ediff was 2, which is the default, then the code will require all arcs to track from at least
7 degrees and go up to 18 degrees. If you had a very short elevation angle range, i.e. 5-10 degrees, you might want to
make that a little stricter, minimum of 6 and at least go up to 9 degrees, so an ediff of 1. If you don’t want to enforce
this, just set it to something big. But you can’t turn off all quality control. Since the amplitude can be influenced by the
kind of receiver you are using, if you aren’t sure what a good value would be, you can set that to zero. And you can use
quickLook to get an idea of what it should be.

2.4. Quality Control 13

gnssrefl

One more warning: if you tell the code that you want to use elevation angles of 5 to 25 degrees and it turns out that
your receiver was using an elevation mask of 10 degrees, you will almost certainly end up with no useful results. Why?
Because the best you will do is have a min elevation angle of 10 degrees, and the code will expect them to start at 7
degrees (i.e. 5 + 2). Some cryosphere community members use 7 degree masks on their receivers for no reason that I
can understand - so that situation would also end up with a lot of arcs thrown out.

Another way of thinking about how long an arc is measured in time units. The parameter is called delTmax in the code
and is defined in minutes. The default is very long - 75 minutes - as this code is meant to be useable for soil moisture,
snow, and tides. This will get you into trouble if you are measuring tides and the tide rates of change are large. In those
cases, you might wish to reduce delTmax. See Grauerort for an example of this problem.

Even though we analyze the data as a function of sine of elevation angle, each satellite arc is associated with a specific
time period. The code keeps track of that and reports it in the final answers. Each track is associated with an azimuth.
In the initial versions of the code this was the average azimuth for all the data in your track. From version 1.4.5 and on,
it is the azimuth of the lowest elevation angle in your arc.

2.5 Reflection Zones

What do these satellite reflection zones look like? Below are photographs and reflection zone maps for two standard
GNSS-IR sites, one in the northern hemisphere and one in the southern hemisphere.

Mitchell, Queensland, Australia

14 Chapter 2. Understanding

https://gnssrefl.readthedocs.io/en/latest/use_cases/use_tggo.html
https://gnss-reflections.org/rzones

gnssrefl

Map Satellite

Mab Data [20 m . | Terms of Use | Renort a ma error

Portales, New Mexico, USA

2.5. Reflection Zones

15

gnssrefl

Satellite

Mab Data | 20 m . | Terms of Use | Report a map error

Each one of the yellow/blue/red/green/cyan clusters represents the reflection zone for a single rising or setting GPS
satellite arc. The colors represent different elevation angles - so yellow is lowest (5 degrees), blue (10 degrees) and
so on. The missing satellite signals in the north (for Portales New Mexico) and south (for Mitchell, Australia) are the
result of the GPS satellite inclination angle and the station latitudes. The length of the ellipses depends on the height
of the antenna above the surface - so a height of 2 meters gives an ellipse that is smaller than one that is 10 meters.
In this case we used 2 meters for both sites - and these are pretty simple GNSS-IR sites. The surfaces below the GPS
antennas are fairly smooth soil and that will generate coherent reflections. In general, you can use all azimuths at these
sites.

Now let’s look at a more complex case, station ross on Lake Superior. Here the goal is to measure water level. The
map image (panel A) makes it clear that unlike Mitchell and Portales, we cannot use all azimuths to measure the lake.
To understand our reflection zones, we need to know the approximate lake level. That is a bit tricky to know, but the
photograph (panel B) suggests it is more than the 2 meters we used at Portales - but not too tall. We will try 4 meters
and then check later to make sure that was a good assumption.

16 Chapter 2. Understanding

gnssrefl

Map Satellite

Goog Map Data | Terms of Use | Rebort a mab error

A. Google Map of station ROSS

B. Photograph of station ROSS

2.5. Reflection Zones

17

gnssrefl

Map Satellite

Mab Data [20m .. | Terms of Use | Rebort a man error

C. Reflection zones for GPS satellites at elevation angles of 5-25 degrees for a reflector height of 4 meters.

e J

D. Reflection zones for GPS satellites at elevation angles of 5-15 degrees for a reflector height of 4 meters.

Again using the reflection zone web app, we can plot up the appropriate reflection zones for various options. Since

18 Chapter 2. Understanding

gnssrefl

ross has been around a long time, http://gnss-reflections.org has its coordinates in a database. You can just plug in ross
for the station name and leave latitude/longitude/height blank. You do need to plug in a RH of 4 since mean sea level
would not be an appropriate reflector height value for this case.

Start out with an azimuth range of 90 to 180 degrees. Using 5-25 degree elevation angles (panel C) looks like it won’t
quite work - and going all the way to 180 degrees in azimuth also looks it will be problematic. Panel D shows a smaller
elevation angle range (5-15) and cuts off azimuths at 160. These choices appear to be better than those from Panel C.

It is also worth noting that the GPS antenna has been attached to a pier - and boats dock at piers. You might very well
see outliers at this site when a boat is docked at the pier.

Note: we now have a refl_zones tool in the gnssrefl package.

Once you have the code set up, it is important that you check the quality of data. This will also allow you to check
on your assumptions, such as the appropriate azimuth and elevation angle mask and reflector height range. This is the
main reason quickLook was developed.

2.6 Maximum Resolvable Reflector Height

The “Nyquist” is complicated for GNSS-IR for various reasons - one being the units are not the same as the units of
what we care about, the Reflector Height. So I am going to call it the Maximum Resolvable Reflector Height, which is
a mouthfull, but at least you have some idea what it means.

If you are interested in the details of this calculation, please see the Roesler and Larson paper. If you want to compute
it for your site, please use max_resolve_RH That’s all I am going to say on the matter.

2.7 quickLook

quickLook is meant to provide the user with a visual sense of the data at a given site. It has stored defaults that work
for stations with reflectors that are lower than 8 meters. You can change those defaults on the command line.

Example from Boulder
quickLook p041 2020 132

That command will produce this periodogram summary :

2.6. Maximum Resolvable Reflector Height 19

https://gnss-reflections.org
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.refl_zones_cl.html
https://link.springer.com/article/10.1007/s10291-018-0744-8
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.max_resolve_RH_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.quickLook_cl.html

gnssrefl

GNSS-IR: P041 Freq:GPS L1 Year/DOY:2020,132 elev: 5-25

15 A

volts/volts
=
Q
|

154

voltsfvolts

reflector height (m)

reflector height (m)

By default, these are L1 data only. Note that the x-axis does not go beyond 8 meters. This is because we have used the
defaults. Furthermore, note that results on the x-axis begin at 0.5 meters. Since you are not able to resolve very small
reflector heights with this method, this region is not allowed. These periodograms give you a sense of whether there
is a planar reflector below your antenna. The fact that the peaks in the periodograms bunch up around 2 meters means
that at this site the antenna phase center is ~ 2 meters above the ground. The colors represent different satellites. If the
data are plotted in gray that means you have a failed reflection. The quadrants are Northwest, Northeast and so on.

quickLook also provides a summary of various quality control metrics:

quickLook Retrieval Metrics: p041 Freq:GPS L1 2020/132 elev:5-25

8

— ® good
E 61 e bad
o

T 4

© 2 eume ¢ ce WAL MIMSIDO AN WA 0 D 0@ W

81 ° .. ® ° -—- QC value used

8 o ® 2 .3-.4' ‘e . ® v

g 61 S o Yo oo

y; "* s, o

[1+]

g 11
2 s}
E 154 o® --- QCvalue used
-l'gU ... o ..

o o [

gf L] ™ [] ®] .. L Oe LA]
— 101 * 9 *s o ° 9 e ® o .
= ... L] ® L] L] ® g0 ' L

o ______ » ___ e 0¥ e _____ _
u ®

j=R T T T T T T T
n 0 50 100 150 200 250 300 350

Azimuth (degrees)

20

Chapter 2. Understanding

gnssrefl

The top plot shows the sucessful RH retrievals in blue and unsuccessful RH retrievals in gray. In the center panel are
the peak to noise ratios. The last plot is the amplitude of the spectral peak. The dashed lines show you what QC metrics
quickLook was using. You can control/change these on the command line.

If you want to look at L2C data you just change the frequency on the command line. L2C is designated by frequency
20:

quickLook p041 2020 132 -fr 20

GNSS-IR: P041 Freq:GPS L2C Year/DOY:2020,132 elev: 5-25

15 4

10 1

voltsfvolts

5]
L

volts/volts

reflector height (m) reflector height (m)

L2C results are always superior to L1 results. They are also superior to L2P data. If you have any influence over
a GNSS site, please ask the station operators to track modern GPS signals such as L2C and LS5 and to include it in the

archived RINEX file.
Example for Lake Superior

quickLook ross 2020 170 -e1 5 -e2 15

2.7. quickLook 21

gnssrefl

quickLook Retrieval Metrics:

ross Freq:GPS L1 2020/170 elev:5-15

8
— e good
E 64 e bad
T 44 ,‘o...-.og.o.o...n.uu:”. ow
%, .
g 5
uin | | ot ae |
¢ °® ¢ Qc val d
e [] - value use
ﬁ 4 s ® ‘... o e S e ;.
=] e ® o ° 1~ . l.o
™ * o ® L]
% 3"'""'.".‘______"""'""““"_-__. ____ :'""'I“".'.'__; ________
& P |] ®e
2 . T . T T T .. T T
=
E === QC value used
+% 20 ° é
[
: U SR Y IS P
© ° “qe ® oq® e o o o0 4.,
= | o0
101 % o . IR ¢ e _______L_
o T : . : . : .
n 0 50 100 150 200 250 300 350

Azimuth (degrees)

The good RH estimates (in blue in the top panel) are telling us that we were right when we assessed reflection zones
using 4 meters. We can also see that the best retrievals are in the southeast quadrant (azimuths 90-180 degrees). This
is further emphasized in the next panel, that shows the actual periodograms.

GNSS-IR: ROSS Freq:GPS L1 Year/DOY:2020,170 elev: 5-15

voltsfvolts

= [[oo
Q w (=] uw
| | ! |

L8]
L

251

20 A

volts/volts

reflector height (m)

Example for a site on an ice sheet

Example for a taller site on an ice sheet

reflector height (m)

Warning: quickLook calculates the minimum observed elevation angle in your file and prints that to the screen so you

22

Chapter 2. Understanding

https://gnssrefl.readthedocs.io/en/latest/use_cases/use_gls1.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_smm3.html

gnssrefl

know what it is. It also uses that as your emin value (el) if the default is smaller. It does this so you don’t see all arcs
as rejected. Let’s say your file had a receiver-imposed elevation cutoff of 10 degrrees. The default minimum elevation
angle in quickLook is 5 degrees. With the default ediff value of 2, not a single arc would reach the minimum required
value of 7 (5§ + 2); everything would be rejected. quickLook instead sees that you have a receiver-imposed minimum
of 10 and would substitute that for the default emin. gnssir does not do this because at that point you are supposed to
have chosen a strategy, which is stored in the json file.

quickLook -screenstats True provides more information to the screen about why arcs have been rejected.

2.8 gnssir

gnssir_input
A full listing of the possible inputs and examples for gnssir_input can be found here.

Your first task is to define your analysis strategy. We use station p101 as an example. If the station location is in our
database:

gnssir_input p101

If you have your own site, you should use -lat, -lon, -height as inputs.
If you happen to have the Cartesian coordinates (in meters), you can set -xyz True and input those instead.

The json file of instructions will be stored in $REFL_CODE/input/p101.json.

The default azimuth inputs are from 0 to 360 degrees. You can set your preferred azimuth regions using -azlist2.
Previously you were required to use multiple azimuth regions, none of which could be larger than 100 degrees. That is
no longer required. However, if you do need multiple distinct regions, that is allowed, e.g.

gnssir_input p101 -azlist2 0 90 180 270
If you wanted all southern quadrants, since these are contiguous, you just need to give the starting and ending azimuth.
gnssir_input p101 -azlist2 90 270

You should also set the preferred reflector height region (h1 and h2) and elevation angle mask (el and e2). Note: the
reflector height region should not be too small, as it is also used to set the region for your periodogram. If you use tiny
RH constraints, your periodogram will not make any sense and your work will fail the quality control metrics.

gnssir

gnssir estimates reflector heights. It assumes you have made SNR files and defined an analysis strategy. The minimum
inputs are the station name, year, and doy.

gnssir p041 2020 150
Additional inputs
Where would the code store the files for this example?
* analysis instructions are stored in SREFL_CODE/input/p041.json
* SNR files are stored in SREFL_CODE/2020/snr/p041
¢ Reflector Height (RH) results are stored in SREFL_CODE/2020/results/p041/150.txt
For more information about the decisions made in gnssir, set -screenstats T
To have plots come to the screen, set -plt to T or True.

If you want to try different strategies, make multiple json files with the -extension input. Then use the same -extension
command in gnssir.

This is a snippet of what the result file would look like

2.8. gnssir 23

https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.gnssir_input.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.gnssir_cl.html

gnssrefl

gnssrefl, https://github.com/kristinemlarson
Phase Center corrections have NOT been applied
year, doy, RH, sat,UTCtime, Azim, Amp, eminO, emax0,NumbOf,freq,rise,EdotF, PkNoise DelT MID refr-appl

(2 3) 4 (&) 6 () (8) (9) (1) (11) (12) (13) (14) (15) (16) 1(17)
m

is yes

(€H)

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

hrs deg v/v deg deg values hrs min

14.952 120.40 .14 .95 260 .84517 58999.622998
.410 225.31 .18 .93 236 -1 -0.75974 58999.392095
.717 319.30 .16 .91 207 1 .67554 58999.238194
.277 199.81 .94 182 1 0.58884 58999.761539
.002 190.39 .94 198 -1 .63144 58999.500081
.115 306. .97 216 1 .69272 58999.296435
.154 160. .99 187 -1 .59952 58999.589757
.456 54. .94 218 -1 .70039 58999.060671
.506 171. .97 198 1 .63146 58999.854421
.623 62. .91 238 -1 -0.76263 58999.942616
.331 .96 186 1 0.59437 58999.722130
.185 .93 186 -1 .60020 58999.716053
.860 44. .96 208 -1 .67217 58999.660845
.648 150. .94 214 1 .68352 58999.485324
.227 178. .89 190 -1 .61098 58999.634456

.925
.995
.930
:1:10]
.920
.910
.892
.970
.950
.940
.900
.925
977
:1:10]

RRRRRERRBRRRERRRRERRRRR
VOONAAUVTULAWWN R R
VUV UVUUBUUVL KLU W®N
RRRBPRRBRPBRREBRRRBRRRR
AUBABABRBRUAOARRUNUVIWG
RRERRRRERRBRRRBRRRRBRRRRR

Note that the names of the columns (and units) are provided (this may be out of date):

* Amp is the amplitude of the most significant peak in the periodogram (i.e. the amplitude for the RH you esti-
mated).

* DelT is how long a given rising or setting satellite arc was, in minutes.

* emin0O and emax0 are the min and max observed elevation angles in the arc.

* rise/set tells you whether the satellite arc was rising (1) or setting (-1)

* Azim is the average azimuth angle of the satellite arc

* sat and freq are as defined for gnssrefl (i.e. 101 is Glonass L1)

* MIJD is modified julian date

* PkNoise is the peak to noise ratio of the periodogram values

* last column is currently set to tell you whether the refraction correction has been applied

* EdotF is used in the RHdot correction needed for dynamic sea level sites. The units are hours/rad. When mul-
tiplied by RHdot (meters/hour), you will get a correction in units of meters. For further information, see the
subdaily code.

Kristine M. Larson

January 11, 2024

24 Chapter 2. Understanding

CHAPTER
THREE

FILES, FORMATS, FREQUENCIES

3.1 Environment Variables

You need three environment variables to run this code: REFL_CODE, ORBITS, and EXE. If you are using the jupyter
notebooks or the docker, they are defined for you.

If you are working with pypi or github clone install, you must define them EVERY TIME YOU USE THE CODE. This
is most easily done by setting them in your setup script, which on my machine is called .bashrc.

If you are working with the docker, these should all be set up for you. But knowing that they exist can be helpful in
looking for files, etc.

3.2 How do | collect my own GNSS data?

We do not have instructions in this software package for how you can operate your own receiver for GNSS-IR. Currently
we need you to save your observation data as Rinex 2.11, Rinex 3, or NMEA formats (see below). At a minimum you
must save the SNR data; we strongly urge you to track/save modern GPS signals, whicha are L2C and L5. If you
have multi-GNSS capabilities, we strongly encourage you to use them. And never use an elevation mask on your
receiver. They are completely unncessary for positioning (which allows masking to be done at the software level) and
are extremely harmful to GNSS-IR.

3.3 How do | analyze my own GNSS data?

To analyze your own GNSS data you must comply with the software expectations for how the files should be named.
The naming conventions for GNSS observation files are given below.

If you are working with the docker, I have made some notes in the docker install section that might be helpful to you
about where to store your files.

If you are working with git clone or pypi install, you should be able to have the RINEX files in the directory you are
currently working in. Or you should put them in the rinex directory as defined below in the Where Files are Stored
section, i.e. $REFL_CODE/YYY Y/rinex/abcd where abcd is the station name.

Examples are given in the rinex2snr code. Documentation can always be improved, so if you would like to add more
examples or find the current documentation confusing, please submit a pull request.

If you are using the notebooks, there is currently no notebook for this option. Please contact
Kelly.Enloe @earthscope.org for guidance.

If you have questions about converting NMEA files, the best I can offer is that you read the next section on that specific
format.

25

https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.rinex2snr_cl.html

gnssrefl

Many file conversion programs produce orbit files as well as observation files. These orbit files are unnecessary in this
software package. The code is set up to find the appropriate orbit files for you.

3.4 GPS/GNSS Observation Data Formats

Please keep in mind that there are multiple issues here:
¢ Are your observation files stored in what gnssrefl considers to be a compliant format?
* Are your observation files properly named?
* Are your observation files stored where the code expects to find them?
* Do your observation files include the data we need for GNSS-IR (the SNR observables)

¢ Did you compress you file in some way - and does gnssrefl recognize this kind of compression? (Hatanaka, gzip,
Z, etc etc)

Unfortunately all of these issues come into play, and it can be confusing to figure out where the problem is. We have
tried as best we can to make screen output that will help you with your problem.

Input observation formats: the code only recognizes RINEX 2.11, RINEX 3 and NMEA input files.
RINEX 2.11

We strongly prefer that you use lower case filenames. 1 cannot promise you that the code will find files that are stored
in uppercase. Lowercase filenames are the standard at global archives. They must have SNR data in them (S1, S2, etc)
and have the receiver coordinates in the header. The files should follow these naming rules:

* all lowercase
* station name (4 characters) followed by day of year (3 characters) then 0.yyo where yy is the two character year.
» Example: algo0500.210 where station name is algo on day of year 50 from the year 2021

It is also standard to use the Hatanaka files. Instead of ending in an o the Hatanaka files end in a d.

Example filename : onsa0500.22d

We also generally allow two kinds of compression, unix compression and gzip:

Unix compression example filename : onsa0500.22d.Z

gzip example filename : onsa0500.220.gz

We do not make any effort to find files with the zip ending. If your files have this ending, you must unzip them before
running gnssrefl.

RINEX 3

While we support RINEX 3 files, we do not read the RINEX 3 file itself - we rely on the gfzrnx utility developed by
Thomas Nischan at GFZ to translate from RINEX 3+ to RINEX 2.11 If you have RINEX 3 files, they should be all
upper case (except for the extension rnx or crx).

Example filename: ONSAOOSWE_R_20213050000_01D_30S_MO.rnx
* station name (9 characters where the last 3 characters are the country), underscore
* capital R or capital S, with underscore on either side
* four character year
* three character day of year

¢ four zeroes, underscore,

26 Chapter 3. Files, Formats, Frequencies

https://www.ngs.noaa.gov/CORS/RINEX211.txt
https://files.igs.org/pub/data/format/rinex303.pdf
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/

gnssrefl

¢ 01D, underscore
¢ ssS, underscore, MO.
* followed by rnx (crx if it is Hatanaka format). Note: these are lowercase

01D means it is one day. Some of the other parts of the very long station file name are no doubt useful, but they are
not recognized by this code. By convention, these files may be gzipped but not unix compressed. If you want a generic
translation program, you can try rinex3_rinex2. It has the requirement that you input the input and output RINEX file
names.

For a few archives, we allow 1 sample per second files. Following the protocol of the IGS, these files are unfortunately
15 minutes long, which means you have to download 96 of them. UNAVCO/Earthscope is much more sensible about
providing 1 sample per second files, and returns a single file, at least for the RINEX 2.11 format.

If you want the code to be able to find those highrate files, you must tell the code you want to use the -rate high files
and provide -samplerate 1. Why two inputs? Because the -rate high option tells the code to look in a particular folder.
The samplerate is related to the name of the file itself.

Unfortunately IGS archives have refused to change the standard storage format of 96 files per day. And after six months,
they tar the files. This code does not currently have the capability to recover those tarred files. I am happy to host it
- but someone else needs to do it. Please look at the existing code and make a new python function with similar
inputs/outputs and submit a pull request. Keep in mind that you should be able to use the existing code base once you
have downloaded and untarred the IGS archived file.

Please see the rinex2snr documentation page for more examples.
NMEA

NMEA formats can be translated to SNR using nmea2snr. Inputs are similar to that used by rinex2snr: the 4char station
name, the year, and day of year. NMEA files are assumed to be stored as:

$REFL_CODE + /nmea/ABCD/2021/ABCD0030.21.A
for station ABCD in year 2021 and day of year 3.
NMEA files may be gzipped.

This is different than the file structure we used for RINEX files and is entirely due to the wishes of the people that con-
tributed this code. If you would like the code to also allow a traditional folder location (SREFL_CODE/2021/nmea/abcd
or $REFL_CODE/2021/nmea/ABCD), I am fine with that. I ask that you please submit a pull request.

Additional information about nmea2snr is in the code.
ORBITS

We have tried our best to make the orbit files relatively invisible to users. But for the sake of completeness, we are
either using broadcast navigation files in the RINEX 2.11 format or precise orbits in the sp3 format. If you have nav
files for your station, we recommend you delete them. They are not useful in this code.

EXECUTABLES

There are two key executables: CRX2RNX and gfzrnx. For notebook and docker users, these are installed for you.
pypi/github users must install them. The utility installexe should take care of this. They are stored in the directory
defined by the EXE environment variable.

3.4. GPS/GNSS Observation Data Formats 27

https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.nmea2snr_cl.html

gnssrefl

3.5 Where Files are Stored

File structure for station abcd in the year YYY'Y (last two characters YY), doy DDD:
* REFL_CODE/input/abcd.json - instructions for gnssir analysis, refraction files
e REFL_CODE/YYYY/snr/abcd/abcdDDDO0.YY.snr66 - SNR files
* REFL_CODE/YYY Y/rinex/abcd/ - RINEX files of various flavors can be stored here
* REFL_CODE/YYY Y/results/abcd/DDD.txt Lomb Scargle analysis goes here
* REFL_CODE/YYY Y/phase/abcd/DDD.txt phase analysis
* REFL_CODE/Files/ - various output files and plots will be placed here
* ORBITS/YYY Y/nav/autoDDDO0.Y Yn - GPS broadcast orbit file
e ORBITS/YYYY/sp3/ - sp3 files of orbits - these use names from the archives.

RINEX files downloaded from archives are not stored by this code. In fact, quite the opposite. If they are being
translated, they are deleted. Do not keep your only copy of RINEX files in your default directory.

You do not need precise orbits to do GNSS-IR. We only use them as a convenience. Generally we use multi-GNSS sp3
files. See the rinex2snr documentation for more details on the orbits you can use.

Some of the utilities and environmental products code store files in REFL._CODE/Files The locations of these files are
always provided in the screen output.

The inputs to gnssir are generally stored in the REFL._CODE/input folder. This primarily means the Lomb Scargle data
analysis inputs, i.e. the “json” files, e.g. p041.json for station pO41. It also includes the refraction file (p041_refr.txt)
that is created automatically. This calculation requires a set of parameters stored in a “pickle” format, gpt_1wA.pickle.
This file should be automatically stored for you.

3.6 The SNR data format

Reminder: UTC does not exist in our world. Everything should be GPS time, which is UTC without leap seconds.

The snr options are mostly based on the need to remove the “direct” signal. This is not related to a specific site mask
and that is why the most frequently used options (99 and 66) have a maximum elevation angle of 30 degrees. The
azimuth-specific mask is decided later when you run gnssir. The SNR choices are:

* 66 is elevation angles less than 30 degrees (this is the default)

* 99 is elevation angles of 5-30 degrees

» 88 is all data

* 50 is elevation angles less than 10 degrees (good for very tall sites, high-rate applications)
66,99, etc are not good names for files. And for this I apologize. It is too late to change them now.
The columns in the SNR data are defined as:

¢ Satellite number (remember 100 is added for Glonass, 200 for Galileo etc)

* Elevation angle, degrees

* Azimuth angle, degrees

¢ Seconds of the day, GPS time

* elevation angle rate of change, degrees/sec.

28 Chapter 3. Files, Formats, Frequencies

gnssrefl

S6 SNR on L6
* SISNRonL1
* S2SNR on L2
* S5SNR on L5
* S7SNR on L7
* S§ SNR on L8
The unit for all SNR data is dB-Hz.

3.7 GNSS frequencies

1,2,20, and 5 are GPS L1, L2, L2C, and L5
101,102 are Glonass L1 and L2

201,205, 206, 207, 208: Galileo frequencies, which are set as 1575.420, 1176.450, 1278.70, 1207.140, 1191.795
MHz

302, 306, 307 : Beidou frequencies, defined as 1561.098, 1207.14, 1268.52 MHz

3.8 Additional files

EGM96geoidDATA .mat is stored in REFL._CODE/Files
* station_pos.db is stored in REFL._CODE/Files. This is a compilation of station coordinates from Nevada Reno.

» gpt_lwA.pickle is stored in REFL_CODE/input. This file is used in the refraction correction.

3.9 Some comments about signals

3.9.1 GPS L2C

Why do I like L2C? What’s not to like? It is a modern civilian code without high chipping rate. That civilian part
matters because it means the receiver knows the code and thus retrievals are far better than a receiver having to do
extra processing to extract the signal. Here is an example of a receiver that is tracking both L2P and L2C. Originally
installed for the Plate Boundary Observatory, it is a Trimble. The archive (unavco) chose to provide only L2P in the 15
second default RINEX file. However, it does have the L2C data in the 1 second files. So that is how I am able to make
this comparison. PO38 is a very very very flat site.

Here are the L2P retrievals:

3.7. GNSS frequencies 29

gnssrefl

GNSS-IR: T038 Freq:GPS L2 Year/DOY:2017,365 elev: 5-25

Northeast

Northwest

volts/volts
N

volts/volts
%]

reflector height (m) reflector height (m)

Now look at the L2C retrievals.
GNSS-IR: P038 Freq:GPS L2C Year/DOY:2017,365 elev: 5-25

Northwest Northeast
20
20 A
15
815
(=]
= 10
£ 10
g -
51 3 N
0 0
! T T T T T
5 6

i

T

1 2 3 4 5 6
Southwest

voltsfvolts

reflector height (m)

reflector height (m)

If you were trying to find a periodic signal, which one would you want to use?

To further confuse things, when the receiver was updated to a Septentrio, unavco began providing L2C data in the
default 15 second files. This is a good thing - but it is confusing to people that won’t know why the signal quality

improved over night.

30 Chapter 3. Files, Formats, Frequencies

gnssrefl

3.9.2 GPS L5

Another great signal. I love it. It does have a high chipping rate, which is relevant (i.e. bad) for reflectomtry from very
tall sites.

3.9.3 Aliasing

While it will show up in GPS results too - there seems to be a particularly bad problem with Glonass L1. I used an
example from Thule. The RH is significant - ~20 meters. So you absolutely have to have at least 15 sec at the site or
you violate the Nyquist. Personally I prefer to use 5 sec - which means I have to download 1 sec and decimate. This
is extremely annoying because of how long it takes to ftp those files to my local machine. Let’s look at L1 solutions
using a 5 second file - but where I invoke the -dec option for gnssir. That way I can see the impact of the sampling. I

also using the -plt T option.
This is 5 second GPS L1.

thu2 Raw Data/Periodogram for GPS L1 Frequency

I | .
I..ulﬂdnl A

80

60

20 A

volts/volts
o
|

—20 4 {

—40

4 5 6 7 8 9 10 11
Elevation Angles (deg)

N
Vi

35

<]

]
w

]
o

/
iy
I
N

volts/volts
=
w

=
(=]

w

o
L

T T T T T T T T T
14 16 18 20 22 24 26 28 30
Reflector Height (m)

This is 15 second GPS L1. You see some funny stuff at 30 meters, and yes, the periodograms are noisier. But nothing
insane.

3.9. Some comments about signals 31

gnssrefl

thu2 Raw Data/Periodogram for GPS L1 Frequency

80
60
A .

20

volts/volts

—20 4 ‘l

—40

4 5 6 7 8 9 10 11

Elevation Angles (deg)

N\ fA

25

20

- Jf\/ | \ /

10

—
—)
e

volts/volts

0 -
T T T T T
14 16 18 20 22 24 26 28 30
Reflector Height (m)

Now do 5 second Glonass L1

32 Chapter 3. Files, Formats, Frequencies

gnssrefl

thu2 Raw Data/Periodogram for Glonass L1 Frequency

| |

100

volts/volts
[=]
|

—50

-100

7 8
Elevation Angles (deg)

10

3

&

volts/volts
N
o

Contrast with the Glonass L1 results using 15 sec decimation! So yeah, aliasing is a problem.

Reflector Height (m)

3.9. Some comments about signals

33

gnssrefl

thu2 Raw Data/Periodogram for Glonass L1 Frequency

100 |
%0 ‘ I A \ |
= 4]
E
-50 y 7
4 5 6 7 8 9 10 11
Elevation Angles (deg)
. N
- //}(/ WYY
<20
10 ~ A /
) — i ! ! !
14 16 18 20 22 24 26 28 30
Reflector Height (m)
3.9.4 E5
Now about RINEX L8 ... also known as E5. This is one of the new Galileo signals. Despite the fact that it is near the

frequencies of the other L5 signals, it is not the same. You can see that it in the multipath envelope work of Simsky et

al. shown below.

34

Chapter 3. Files, Formats, Frequencies

gnssrefl

Multipath error envelope for SMR = 6dB

Code error (m)

_5 s ! ! ! ! ! !

0 50 100 150 200 250 300 350 400
Multipath delay (m)
— Eb5a (BPSK(10)) — E5 (AItBOC(15, 10))
E6BC (BPSK(5)) — GPS-CA

— L1BC (BOC(L, 1))

Most of you will not be familiar with multipath envelopes - but for our purposes, we want those envelopes to be big
- cause more multipath, better GNSS-IR. First thing, multipath delay shown on the x-axis is NOT the reflector height
(RH). it is 2RHsin(elevation angle). So even a pretty tall RH will not be obstructed by the new Galileo codes except

for ES.
This is ESa

3.9. Some comments about signals 35

gnssrefl

at01 Raw Data/Periodogram for Galileo L5 Frequency

A
N | . N |
3

401 1 I A I A

volts/volts
[=]
|

5 6 7 8 9 10 11 12 13

(S

]
wu

]
o

volts/volts
=
w

10

T
6 8 10 12 14
Reflector Height (m)

This is ES. Note that instead of nice clean peaks, it is spread out. You can also see that the ES retrievals degrades as
elevation angle increases, which is exactly what you would expect with the multipath delay increasing with elevation
angle. I would just recommend only using this signal for RH < 5 meters. And even then, if you are tracking L8, you

probably also have L5, L6, and L7, so there is not a ton gained by also using L8.

36 Chapter 3. Files, Formats, Frequencies

gnssrefl

at01 Raw Data/Periodogram for Galileo L8 Frequency

volts/volts
[=]
|

—20 1 : ;

—40

—60 T T T
8 9 10 11 12 13
Elevation Angles (deg)

volts/volts

0l ‘ v -! | N, _..! ‘ = .
6 8 10 12 14 16 18 20
Reflector Height (m)

3.9.5 What about L1C?

I would be happy to host some results from L1C - please submit a pull request with the needed figures and a description
of what you are comparing. I imagine this would require making two snr files - one with L1C and one with L1 C/A.
And using only the small subset of satellites that transmit L1C. From what I have seen, it is not much better than L1
C/A - which surprisees me. But I have to imagine it is receiver dependent (some receivers have terrible C/A SNR).
The multipath envelope figure is taken from:

Title: Experimental Results for the Multipath Performance of Galileo Signals Transmitted by GIOVE-A Satellite

Authors: Andrew Simsky,David Mertens,Jean-Marie Sleewaegen, Martin Hollreiser, and Massimo Crisci

International Journal of Navigation and Observation Volume 2008, DOI 10.1155/2008/416380

3.9. Some comments about signals 37

gnssrefl

38 Chapter 3. Files, Formats, Frequencies

CHAPTER
FOUR

QUICK LINKS TO THE CODE

I originally made special documentation pages for different modules. I am now trying to put all documentation INTO
the code intself using readthedocs since the format allows for example calls. While I still have some discussion pages
(so a link to the code and a link to a discussion page), those discussion links will likely go away in the not very distant
future.

4.1 Main Functions

e rinex2snr
* quickLook

* gnssir code, inputs

4.2 Important Helper Functions

* nmea2snr
¢ daily_avg code, discussion
* invsnr code, discussion, input

e refl_zones

4.3 Environmental Products

» snowdepth code, discussion

tides (subdaily) code, discussion

* vwc code, discussion, vwc_input, phasecode

39

https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.rinex2snr_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.quickLook_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.gnssir_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.gnssir_input.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.nmea2snr_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.daily_avg_cl.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_dailyavg.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.invsnr_cl.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_invsnr.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.invsnr_input.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.refl_zones_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.snowdepth_cl.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_snowdepth.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.subdaily_cl.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_subdaily.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.vwc_cl.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_vwc.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.vwc_input.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.quickPhase.html

gnssrefl

4.4 Download Scripts

download_orbits
download_rinex
download_tides

download_unr

Various Utilities

check_rinex_file
gpsweek
installexe
1Ih2xyz
max_resolve_ RH
mjd

query_unr
quickplt
rinex3_rinex2
rinex3_snr
rinex_coords
smoosh
smoosh_snr
xyz21lh

ymd

ydoy

40

Chapter 4. Quick Links to the Code

https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.download_orbits.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.download_rinex.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.download_tides.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.download_unr.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.check_rinex_file.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.gpsweek.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.installexe.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.llh2xyz.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.max_resolve_RH_cl.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.mjd.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.query_unr.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.quickplt.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.rinex3_rinex2.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.rinex3_snr.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.rinex_coords.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.smoosh.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.smoosh_snr.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.xyz2llh.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.ymd.html
https://gnssrefl.readthedocs.io/en/latest/api/gnssrefl.ydoy.html

CHAPTER
FIVE

EXAMPLE USE CASES

5.1 Ice Sheets

¢ Lorne, Antarctica

* Dye2, Greenland

¢ Thwaites Glacier, Antarctica
e Summit Camp, Greenland

¢ Phoenix, Antarctica

5.2 Lakes, Reservoirs, and Rivers

* Michipicoten, Canada

* Lake Taupo, New Zealand

¢ Steenbras, South Africa

¢ St Lawrence River,Canada

¢ Lake Mathews, Riverside, USA
¢ [ake Malawi, Tanzania

¢ Lake Yellowstone, USA

* Wesel, Germany

5.3 Soil Moisture

¢ Portales, New Mexico USA
e Mitchell, Australia

¢ Victorville, California USA
¢ Boulder, Colorado USA

41

https://gnssrefl.readthedocs.io/en/latest/use_cases/use_lorg.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_gls1.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_lthw.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_smm3.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_phnx.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_mchn.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_tgho.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_sbas.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_pmtl.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_mat2.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_mbbc.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_p709.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_wesl.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_p038.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_mchl.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_scia.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_mfle.html

gnssrefl

5.4 Seasonal Show Accumulation

e Marshall, Colorado USA

* Niwot Ridge, Colorado USA
¢ Half Island Park, Idaho USA
» Utqgiagvik, Alaska USA

5.5 Tides

* Friday Harbor, Washington USA
¢ St Michael, Alaska USA

* Vlissingen, the Netherlands

e Puerto Penasco, Mexico

* Elbe River, Germany

About 75% of these use cases use access to the Earthscope/UNAVCO archive. In some cases, sopac can be used as an
alternate archive. If at all possible, you should sign up for an EarthScope account.

Some of these use cases were created with an earlier version of the gnssrefl software. The plots might look slightly
different and the defaults we used in the analysis might have changed.

5.6 GPS Tool Box Demonstration

e MNIS (not finished)

5.7 Homeworks from Previous Shortcourses:

* Homework 0: Make sure you have properly installed the software
* Homework I: Practice setting your azimuth and elevation angle mask
e Homework 2: Learn how to measure snow surface variations
— Homework 2 Solution
e Homework 3: Learn how to measure water levels

— Homework 3 Solution

42 Chapter 5. Example Use Cases

https://gnssrefl.readthedocs.io/en/latest/use_cases/use_p041.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_nwot.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_p360.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_utqi.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_sc02.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_at01.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_vlis.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_tnpp.html
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_tggo.html
https://data-idm.unavco.org/user/profile/login
https://gnssrefl.readthedocs.io/en/latest/use_cases/use_mnis.html
https://gnssrefl.readthedocs.io/en/latest/homeworks/homework0.html
https://gnssrefl.readthedocs.io/en/latest/homeworks/homework1.html
https://gnssrefl.readthedocs.io/en/latest/homeworks/homework2.html
https://gnssrefl.readthedocs.io/en/latest/homeworks/homework2_soln.html
https://gnssrefl.readthedocs.io/en/latest/homeworks/homework3.html
https://gnssrefl.readthedocs.io/en/latest/homeworks/homework3_soln.html

CHAPTER
SIX

COMMUNITY

6.1 E-mail list

Would you like to join our gnssrefl users email list? This is currently maintained by earthscope.org. To join, please
e-mail melissa.weber@earthscope.org or Kristine Larson.

6.2 Publications

* One Receiver, Zenith Pointing

* Non-Zenith Pointing Antenna Examples

6.3 Acknowledgements

e Kristine M. Larson Overall
» Kelly Enloe Jupyter Notebooks
e Tim Dittmann Access to Dockers

¢ Radon Rosborough helped with python/packaging questions, improved our docker distribution, and set up smoke
tests.

» Naoya Kadota added the GSI data archive and helped find a bug in nmea2snr.

* Joakim Strandberg provided python RINEX translators and the EGM96 code.

* Johannes Boehm provided source code for the refraction correction.

e Makan Karegar added the NMEA capability.

* Dave Purnell provided his SNR inversion code.

 Carolyn Roesler helped with the original GNSS-IR Matlab codes.

* Felipe Nievinski and Simon Williams have provided significant advice for this project.
* Clara Chew and Eric Small developed the soil moisture algorithm; I ported it to python with Kelly’s help.
* Sree Ram Radha Krishnan ported the rzones web app code.

¢ Dan Nowacki added Glonass to the NMEA reader

* Taylor Smith has worked on the NMEA reader and the refl_zones utility.

* Surui Xie was instrumental in finding a bug in the newarcs version

43

https://gnssrefl.readthedocs.io/en/latest/pages/community.html
https://gnssrefl.readthedocs.io/en/latest/pages/tilted.html
https://kristinelarson.net
https://github.com/k-enloe
https://github.com/timdittmann
https://github.com/raxod502
https://github.com/naoyakadota
https://github.com/Ydmir
https://github.com/MakanAKaregar
https://github.com/purnelldj
https://github.com/fgnievinski
https://github.com/sreeram-radhakrishnan
https://github.com/dnowacki-usgs
https://github.com/tasmi

gnssrefl

» Peng Feng, Rudiger Haas, and Gunnar Elgered have helped us improve refraction models.

6.4 How you can help improve this code

» Archives frequently change their file transfer protocols. If you find one in gnssrefl that doesn’t work anymore,
please fix it and let us know. Please test that it works for both older and newer data.

* If you would like to add an archive, please do so. Use the existing code as a starting point.
 Check the issues section of the repository and look for “help wanted.”
* Write up a new use case

* Investigate surface related biases.

6.5 How to get help with your gnssrefl questions

If you are new to the software, you should consider watching the videos about GNSS-IR

Before you ask for help - you should check to see if you are running the current software. Please go to the install page
for help on how to update your latest docker/jupyter installs. For github/pypi, we recommend doing a clean download
and new install.

You are encouraged to submit your concerns as an issue to the github repository. If you are unfamiliar with github,
you can also email Kelly (enloe@earthscope.org) about Jupyter NoteBooks or Tim (dittmann@earthscope.org) for
commandline/docker issues. Please include

* the exact command or section of code you were running that prompted your question.

* details such as the error message or behavior you are getting. Please copy and paste (this is preferred over
a screenshot) the error string. If the string is long - please post the error string in a thread response to your
question.

¢ the operating system of your computer.
Old news section from before we moved to readthedocs
Updated February 1, 2024

Kristine M. Larson

44 Chapter 6. Community

https://github.com/kristinemlarson/gnssrefl/issues
https://gnssrefl.readthedocs.io/en/latest/pages/first_drivethru.html
https://www.youtube.com/playlist?list=PL9KIPkLxL-c_d-NlNsaoGgScWqSxxUB5n
https://github.com/kristinemlarson/gnssrefl
https://gnssrefl.readthedocs.io/en/latest/pages/old_news.html

CHAPTER
SEVEN

2023 SHORT COURSE ON GNSS-IR

Documentation | KL Videos | Course Materials | Installation | Earthscope |

Station: sc02, new spline, RHdot corr/InterFreq corr/outliers removed

4.04 * RHwith RHdot/IFcorr 0.082(m) O
newspline :)i
454 X outliers
o
]
5.0 i
(
n 5.5
8 3
[}
E 6.0
6.5
7.0
¢ H
L4 .
7.5 1 L
16 18 20 22 24 26 28 30

days of the year

7.1 Agenda

May 2. Basic principles of GNSS-IR, How to run the gnssrefl software

May 3. Hydrologic Applications: snow accumulation and soil moisture

May 4. Water applications: lakes, rivers, tides

May 5: Optimizing site installations, GNSS-IR API, improving the software, low-cost sensors

The course meets each day from 09:00-11:00 MDT/17:00-19:00 CET. There will be a short break at the midpoint.

7.2 Before the Class Begins

Getting Started

45

https://gnssrefl.readthedocs.io/en/latest/index.html
https://www.youtube.com/@funwithgps/videos
https://gnssrefl.readthedocs.io/en/latest/pages/sc_media.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_install.html
https://www.earthscope.org/event/2023-gnss-ir-short-course/
https://gnssrefl.readthedocs.io/en/latest/pages/sc_precourse.html

gnssrefl

7.3 Questions

For software installation questions, please use our Slack channel. To join please use this link

7.4 Videos

Some older videos about GNSS-IR are already available.
Welcome video posted April 19

Links to the lectures materials and the videos

7.5 Sponsors

Collaborative Research Center 1502 DETECT, Bonn University

EarthScope

7.6 Course Instructors

Kristine Larson, Bonn University, Germany

Simon Williams, Nat. Ocean Ctr.- United Kingdom

Felipe Nievinski, Uni. Federal do Rio Grande do Sul - Brazil
David Purnell,Laval University - Canada

Thomas Nylen, Danish Technical University, Denmark

Kelly Enloe, EarthScope - USA

Tim Dittmann, EarthScope - USA

46 Chapter 7. 2023 Short Course on GNSS-IR

https://join.slack.com/t/23-gnss-irshortcourse/shared_invite/zt-1tbf5eh5i-HSoFhlSaSV8RwIV8TrZ0TA
https://www.youtube.com/@funwithgps/videos
https://www.youtube.com/watch?v=yijolYWXSQc
https://gnssrefl.readthedocs.io/en/latest/pages/sc_media.html
https://sfb1502.de

CHAPTER
EIGHT

2024 SHORT COURSE ON GNSS-IR FOR WATER LEVEL

MNIS Water Level from GNSS-IR

2.0
154 w f
1.0+

0.5

meters

0.0

—0.5 1

o
3,0 2
2 g

8.1 Registration

Course Registration

8.2 Agenda

March 6 Basic principles of GNSS-IR, How to run the gnssrefl software

March 7 Using gnssrefl for Water Level Measurements: Lakes, Rivers, Tides

MEASUREMENTS

The course meets each day from 12:00-14:00 Central European Time. There will be a short break at the midpoint.

47

https://sfb1502.de/news-events/events/external-events/gnss-ir-2024/gnss-ir-short-course-registration

gnssrefl

8.3 Before the Class Begins

Install gnssrefl

Information from the last class

8.4 Videos

Some older videos about GNSS-IR are available on youtube.

8.5 Sponsor

Collaborative Research Center 1502 DETECT, Bonn University

8.6 Course Instructors

Kristine M. Larson, Bonn University, Germany
Simon Williams, National Oceanography Centre, United Kingdom
Felipe Nievinski, Uni. Federal do Rio Grande do Sul, Brazil

8.7 Summary Paper

More information on measuring water levels using gnssefl

8.8 Interested in Sponsoring a GNSS-IR Short Course?

It takes support from our GNSS-IR community members to offer short courses. If you are interested to have a short
course on the gnssrefl software and a specific application, it is important that you find people that are willing to help
teach it. Please feel free to contact Kristine Larson if you are interested in pursuing this.

8.9 GNSS-IR e-mail list

If you would like to receive e-mail about GNSS-IR and gnssrefl software updates please contact Kristine Larson.

48 Chapter 8. 2024 Short Course on GNSS-IR for Water Level Measurements

https://gnssrefl.readthedocs.io/en/latest/pages/README_install.html
https://gnssrefl.readthedocs.io/en/latest/pages/sc_precourse2024.html
https://www.youtube.com/@funwithgps/videos
https://sfb1502.de
https://ihr.iho.int/wp-content/uploads/2023/11/IHR-29-2-A30.pdf

CHAPTER
NINE

WHAT IS A GOOD GNSS REFLECTIONS SITE?

A good GNSS reflection site has:
* A reflection zone that extends to a wide range of azimuths

* A good receiver tracking multiple GNSS signals and modern (L2C,L5) GPS signals

* A sampling rate that is commensurate with what you are trying to measure (i.e. 30 second sampling rate won’t

work for stations that are more than 8-9 meters above the reflecting surface).

RINEX files with positions in the header and (preferably float) SNR data

¢ There is no elevation mask on the receiver

9.1 Reflection Zones

The only inputs needed to calculate your reflection zones are:
* the approximate position of the GNSS site
* the positions of the GNSS satellites
* the height of the antenna above the reflecting surface

 the GNSS signal wavelength (~0.19 or 0.244 meters for L1 vs. L2)

The equations you need for a Fresnel zone are given in the appendix for Larson and Nievinski (2013). Here are static

examples for a 2 meter reflector height for L1 and L2.

49

gnssrefl

L1 L2

Mapview p041- Fresnel zones —ReflHt. 2m Mapview p041- Fresnel zones —ReflHt. 2m

: —05 —05
BOF | ——10H BOF | ——10H

: —15 N 5| —15
40 (........ _ — 20| AQF et \ '\ _/,_ —20|

meters
o

meters
(@]

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
meters meters

Compare with a 25 meter reflector height:

Mapview p041- Fresnel zones —ReflHt. 25m

400

300f -

100p-

O.

meters

-100}

—200F

~300F -

~4%00 -200 0 200 400
meters

25m reflector height Fresnel zone

Similarly, the sampling rate you need to use is not unknown — you just need to understand how the Nyquist frequency
is defined for the SNR observations.

50 Chapter 9. What is a good GNSS Reflections Site?

gnssrefl

9.2 Designing a good GNSS Reflections Site:

» Sampling interval should be commensurate with your reflection target area. You can generally get away with 30
sec for surfaces that are < 10 meters below the antenna, but I urge you to use 15 sec. For reflectors larger than
50 meters, I recommend 1 sec sampling. The bare minimum sampling rate numbers you need can be calculated
using the code in Roesler and Larson (2018). This code can also be run from the GNSS-IR web app

* Make sure your antenna is surrounded by natural planar surfaces. No crashing waves. No outlet glaciers. No
large ships coming and going.

 Use the reflection zone app or the python utility refl_zones to make sure that you can sense the surface you
want to measure. This is extremely important for water levels, as many groups think seeing the water in a photo
means you can measure it. All you need to check this is the position of your site. The app will calculate the geoid
correction for the ellipsoidal height. If you are trying to measure an interior water body (where mean sea level
is not relevant), there is a manual override.

* If you have flexibility, take into account that sites at mid-latitudes have holes in their sensing zone. In CONUS,
don’t face your GNSS receiver to the north. In southern Africa, South America, and Australia, don’t try to use
GNSS-IR to measure water levels to the south.

* If you are trying to measure snow accumulation in polar regions, you should ensure that your antenna is always
at least 1 meters above the highest snow level. This may mean you need to revisit your site to reset the pole
vertically.

9.3 Operating a good GNSS reflections site:

* Always remove the elevation mask on the receiver!

* Set the sampling interval by evaluating reflection surfaces. The standard GNSS sampling interval of thirty sec-
onds was selected over thirty years ago before the internet existed! Collect (and archive) more data.

* Take photographs of your site.
* If you plan to put your GNSS antenna on a roof, pick the corner that gives you the best view of natural surfaces.

 Track all GPS signals! (L1 and L1C, L2P and L2C, L5). If you can track GLONASS, Galileo, Beidou without
costing a lot of money, I strongly recommend it.

¢ It doesn’t matter if you turn on multipath suppression algorithms or buy a fancy antenna. They don’t stop multi-
path.

* Put SNR data in your RINEX file. RINEX 3 is generally preferred because it makes it easy to include all signals,
but RINEX 2.11 is fine as long as you make sure the file has L2C and LS in it.

9.4 Further reading

* Site guidelines for multi-purpose GNSS reflectometry stations

9.2. Designing a good GNSS Reflections Site: 51

https://link.springer.com/article/10.1007/s10291-018-0744-8
https://gnss-reflections.org/rzones
https://gnss-reflections.org
https://doi.org/10.5281/zenodo.3660744

gnssrefl

52 Chapter 9. What is a good GNSS Reflections Site?

CHAPTER

TEN

API DOCUMENTATION

Information on specific functions, classes, and methods.

10.1 gnssrefl package

10.1.1 Submodules

gnssrefl. EGM96 module

class gnssrefl.EGM96.EGM96geoid
Bases: object

Class for EGM96 geoid corrections

Example

>>> egm = EGMO6geoid()
>>> egm.heights(lat=10, lon=30)
-5.32

height (lat: float, lon: float)

gnssrefl.check_rinex_file module

gnssrefl.check_rinex_file.check_12(i, savebase, nsat_linel, lines, nlin, [2index, year, doy)

Parameters
e i (int) - line number index in RINEX file
» savebase (str) — list of satellites at first epoch
» nsat_linel (int) — number of satellites in first epoch
e nlin (int) — number of lines per satellite allocated in RINEX file
e 12index (int) — index of L1 observable
* year (int) — full year
* doy (int) — day of year

gnssrefl.check_rinex_file.check_rinex_file (rinexfile)
commandline tool to look at header information in a RINEX file tries to look for existence of L2C data

53

gnssrefl

Example

check_rinex_file p0311520.210

Parameters
rinexfile (str)— name of the RINEX 2.11 file

gnssrefl.check_rinex_file.main()

gnssrefl.computempimp2 module

gnssrefl. computemplmp2 .ReadRecAnt (teqclog)
prints out Receiver and Antenna name from a teqc log

Parameters
teqclog (str) — the name of a teqc log

gnssrefl.computemplmp2.check_directories(station, year)

checks that directories exist for teqc logs
Parameters
e station (str) — 4 character station name
* year (int) — full year

gnssrefl.computemplmp2.get_£iles(station, year, doy, look)

Parameters

e station (str) — 4 character station name

* year (int) — full year

* doy (int) — day of year

* look (bool) — whether you should try to get the file from unavco if it does not exist locally
Returns

* navfile (str) — navigation/orbit file

* rinexfile (str) — name of the obs file

* foutname (str) — full name of the teqc log output

e mpdir (str) — directory for MP results

* goahead (boolean) — whether you should go ahead and run teqc

gnssrefl.computemplmp2.main()
computes MP1 MP2 stats using teqc or reads existing log

gnssrefl.computemplmp?2.readoutmp (reqcfile, rcviype)
teqcfile input is the full name of a teqc log rcvtype is a string that includes the name of the receiver you are
searching for. it does not have to be exact (so NETR would work for NETRS) returns MP1, MP2 (both in
meters), and a boolean as to whether the values were found if rcvtype is set to NONE, it will return data without
restriction

gnssrefl.computemplmp2.run_teqc(teqc, navfile, rinexfile, foutname, mpdir)

run teqcs and stores the output

Parameters

54 Chapter 10. APl documentation

gnssrefl

* teqc (str) — location of the teqc executable

e navfile (str) — name of the RINEX nav file

» rinexfile (string) — name of the RINEX observation file

» foutname (str)— name of the output file

* mpdir (str) — location of the multipath directory on your system

gnssrefl.computemplmp? . sfilename (station, year, doy)
Finds mpl1 filename on your system

Parameters
e station (string) — 4 character station name
* year (integer) —
* doy (integer) — day of year

Returns
xfile — the full SNR filename on your local system

Return type
string

gnssrefl.computemplmp?2.vegplt (station, tv, winter)
makes a plot of MP1 multipath metric. Sends to the screen

Parameters
e station (str) — 4 ch station name
* tv (np array) — (year, doy, mpl, mp2)

* winter (bool) — whether to throw out ~jan-apr and ~oct-dec

gnssrefl.daily_avg module
gnssrefl.daily_avg.daily_avg_stat_plots(obstimes, meanRH, meanAmp, station, txtdir, tv, ngps, nglo,
ngal, nbei, test)
plots of results for the daily avg code
Parameters
e obstimes (datetime object)—
* meanRH (numpy array) — daily averaged Reflector Height values in meters

* meanAmp (numpy array) — daily average RH amplitude

station (str) — 4 character station name

txtdir (str) — directory for the results

* tv —is the variable of daily results

ngps (numpy array)— number of gps satellites each day

nglo (numpy array)— number of glonass satellites each day

ngal (numpy array)— number of galileo satellites each day

nbei (numpy array) - number of beidou satellites each day

10.1. gnssrefl package

55

gnssrefl

* test (bool) -

gnssrefl.daily_avg.fbias_daily_avg(station)

reads QC-RH values and the daily averages computes residuals and estimate the frequency bias for all available
frequencies which is printed to the screen

Parameters
station (str) — station name - 4char - lowercase

gnssrefl.daily_avg.quick_raw(alldatafile2, xdir, station, subdir)
quick plot of the raw RH data. No QC

Parameters
e alldatafile2 (str)— name of the raw file to be read
e xdir (str) — code environ variable (I think)
e station (str) — 4 ch station name
* subdir (str) — subdirectory name for results in xdir/Files

gnssrefl.daily_avg.readin_plot_daily (station, extension, yearl, year2, fr, alldatafile, csvformat, howBig,
ReqTracks, aziml, azim2, test, subdir, plot_limits)

worker code for daily_avg_cl.py
It reads in RH files created by gnssir. Applies median filter and saves average results for further analysis
if there is only one RH on a given day - there is no median value and thus nothing will be saved for that day.
Parameters
e station (str) — station name, 4 ch, lowercase
* extension (str) — folder extension - usually empty string
» yearl (integer) — first year
* year2 (integer) — last year

» fr(integer) -0 for all frequencies. otherwise, it must be a legal frequency (101 for Glonass
L1)

* alldatafile (str) — name of the output filename
e csvformat (boolean) — whether you want output as csv format

* howBig (float) — criterion for the median filter, i.e. how far in meters can a RH be from
the median for that day, in meters

* ReqTracks (integer) — is the number of retrievals required per day

e aziml (integer) — minimum azimuth, degrees

* azim2 (integer) — maximum azimuth, degrees

* test (bool) -

* subdir (bool) — subdirectory for output files

* subdir — whether plot limits for the median filter are shown
Returns

* tv (numpy array) — with these values [year, doy, meanRHtoday, len(rh), month, day, stdRH,
averageAmplitude] len(rh) is the number of RH on a given day stdRH is the standard devia-
tion of the RH values (meters) averageAmplitude is in volts/volts

56 Chapter 10. APl documentation

gnssrefl

obstimes (list of datetime objects) — observation times

gnssrefl.daily_avg.write_out_RH_file(obstimes, tv, outfile, csvformat)

write out the daily average RH values

Parameters

gnssrefl.daily_avg.write_out_all (allrh, csvformat, NG, yr, doy, d, good, gazim, gfreq, gsat, gamp,

obstimes (datetime object)—
tv (numpy array) — content of a LSP results file
outfile (string) — full name of output file

csvformat (boolean) — true if you want csv format output

gpeak2noise, gutcTime, tvall)

writing out all the RH retrievals to a single file: file ID is allrh) tvall had everything in it, but it was slowing
everything down, so i do not do anything with it.

Parameters

Returns

allrh (fileID for writing)-—

csvformat (bool) — whether you are writing to csv file

NG (int) — number of lines of results

yr (int) — year

doy (int) — day of year

d (datetime object)—

good (float) — reflector height - I think

gazim (numpy array of floats)— azimuths

gfreq (numpy array of int) - frequencies

gsat (numpy array of int) - satellite numbers

gamp (numpy array of floats)— amplitudes of periodograms
gpeak2noise (numpy array of floats) - peak 2 noise for periodograms
gutcTime (numpy array of floats) - time of day in hours

tvall —

tvall

Return type

7

10.1. gnssrefl package

57

gnssrefl

gnssrefl.daily_avg_cl module

gnssrefl.daily_avg_cl.daily_avg(station: str, medfilter: float, ReqTracks: int, txtfile: str = None, plt: bool =

True, extension: str =", yearl: int = 2005, year2: int = 2030, fr: int = 0,
csv: bool = False, aziml: int = 0, azim2: int = 360, test: bool = False,
subdir: str = None, plot_limits: bool = False)

The goal of this code is to consolidate individual RH results into a single file consisting of daily averaged RH
without outliers. These daily average values are nominally associated with the time of 12 hours UTC.

There are two required parameters - medfilter and ReqTracks. These are quality control parameters. They are
applied in two steps. The code first calculates the median value each day - and keeps only the RH that are within
medfilter (meters) of this median value. If there are at least “ReqTracks” number of RH left after that step, a
daily average is computed for that day.

If you are unfamiliar with what a median filter does in this code, please see https://gnssrefl.readthedocs.io/en/
latest/pages/README _dailyavg.html

The outputs are stored in SREFL_CODE/Files/station by default. If you want to specify a new subdirectory, I
believe that is an allowed option. You can also specify specific years to analyze and apply fairly simple azimuth
constraints.

In summary, three text files are created
1. individual RH values with no QC applied
2. individual RH values with QC applied
3. daily average RH

Examples

daily_avg p041 0.25 10
consolidates results for p041 with median filter of 0.25 meters and at least 10 solutions per day

daily_avg p041 0.25 10 -plot_limits T
the same as above but with plot_limits to help you see where the median filter is applied

daily_avg p041 0.25 10 -year1 2015 -year2 2020
consolidates results for p041 with median filter of 0.25 meters and at least 10 solutions per day and restricts
it to years between 2015 and 2020

daily_avg p041 0.25 10 -year1 2015 -year2 2020 -azim1 0 -azim2 180
consolidates results for p041 with median filter of 0.25 meters and at least 10 solutions per day and restricts
it to years between 2015 and 2020 and azimuths between 0 and 180 degrees

daily_avg p041 0.25 10 -extension NV
consolidates results which were created using the extension NV when you ran gnssir.
Parameters
* station (str) — 4 ch station name, generally lowercase

» medfilter (float)—Median filter for daily reflector height (m). Start with 0.25 for surfaces
where you expect no significant subdaily change (snow/lakes).

ReqTracks (int) — Required number of daily satellite tracks to save the daily average value.

txtfile (str, optional)— Use this parameter to set your own output filename. default
is to let the code choose.

plt (bool, optional)— whether to print plots to screen or not. default is True.

58

Chapter 10. APl documentation

https://gnssrefl.readthedocs.io/en/latest/pages/README_dailyavg.html
https://gnssrefl.readthedocs.io/en/latest/pages/README_dailyavg.html

gnssrefl

* extension (str, optional) - extension for solution names. default is “’. (empty string)

* yearl (int, optional) — restrict to years starting with. default is 2005.
* year2 (int, optional) — restrict to years ending with. default is 2030.

» fr (int, optional)- GNSS frequency. If none input, all are used. Value options:

1: GPSLI
2:GPSL2
20: GPS L2C
5:GPSLsS

101

: GLONASS L1
102 :
201 :
205 :
206 :
207 :
208 :
302:
306 :
307 :

GLONASS L2
GALILEO El
GALILEO E5a
GALILEO E6
GALILEO E5b
GALILEO E5
BEIDOU B1
BEIDOU B3
BEIDOU B2

* csv (boolean, optional)— Whether you want csv instead of a plain text file. default is

False.

e aziml (int, optional)— minimum azimuth, degrees note: should be modified to allow
negative azimuth

* azim2 (int, optional)- maximum azimuth, degrees
e test (bool, optional) — not sure what this does

* subdir (str, optional) - non-default subdirectory for Files output

e plot_limits (bool, optional) — adds the median value and median filter limits to the
plot. default is False

gnssrefl.daily_avg_cl.main()

gnssrefl.daily_avg_cl.parse_arguments()

10.1. gnssrefl package

59

gnssrefl

gnssrefl.decipher_argt module

gnssrefl.decipher_argt.decipher_argt (station, filename, idec, snrname, orbfile, recx, csnr, year, month,
day)

This is an attempt to properly model the satellite orbits. It uses GNSS orbits from the GFZ and Fortran to compute
azimuth and elevation angle. Right now it is L1 only, but does allow Galileo, GPS, and Glonass. It does require
that someone send a proper station location.

This code was written specifically for a dataset collected in Argentina. It is not in NMEA format but was parsed
from it.

Parameters
e station (str) -4 charid
» filename (str) — NMEA output from Argentina
e idec (int) — decimation interval, sec
e snrname (str) — ultimaet output file
» orbfile (str) - sp3 filename
e recx (1ist of floats)— Cartesian station coordinates in meters
e ¢snr (str) — 2 ch snr file choice, i.e. ‘66’ or ‘99’
* year (int) — full yaer
e month (int) — calendar month
* day (int) - calendar day

gnssrefl.decipher_argt.new_azel (station, tmpfile, snrname, orbfile, csnr)

This is an attempt to properly model the satellite orbits. It uses GNSS orbits from the GFZ and Fortran to compute
azimuth and elevation angle. Right now it is L1 only, but does allow Galileo, GPS, and Glonass. It does require
that someone send a proper station location.

Parameters
* tmpfile (str) — NMEA output from Argentina
e snrname (str) — ultimaet output file
» orbfile (str) - sp3 filename

e csnr (str) — 2 ch snr file choice, i.e. ‘66’ or ‘99’

gnssrefl.download_ioc module

gnssrefl.download_ioc.download_ioc(station: str, datel: str, date2: str, output: str = None, plt: bool =
False, outliers: bool = False, sensor=None, subdir: str = None)

Downloads and saves IOC tide gauge files
Parameters
e station (str) - IOC station name
* datel (str) — begin date in yyyymmdd. Example value: 20150101
» date2 (str) —end date in yyyymmdd. Example value: 20150101

* output (str) — Optional output filename default is None The file will be written to
REFL_CODE/Files

60 Chapter 10. APl documentation

gnssrefl

* plt (bool, optional) - plot comes to the screen default is None

* outliers (bool, optional) — tried to remove outliers, but it doesn’t work as yet default
is No

* sensor (str, optional) — type of sensor, prs(for pressure), rad (for radar), fit (for float)
default is None, which means it will print out what is there. if there is more than one sensor
you should specifically ask for the one you want

gnssrefl.download_ioc. find_start_stop (year, m)
finds the start and stop times for each month of the IOC download

Parameters
* year (int) — full year
e m (int) — month number
Returns
* d1 (str) — yyyymmdd for first day of requested month
* d2 (str) — yyyymmdd for last day of requested month

gnssrefl.download_noaa module

gnssrefl.download_noaa.download_noaa(station: str, datel: str, date2: str, output: str = None, plt: bool =
False, datum: str = 'mllw’', subdir: str = None)

Downloads NOAA tide gauge files and stores locally If you ask for 31 days of data or less, it will download
exactly what you ask for. But if you want a longer time series, this code needs to query the NOAA API every
month. To make the code easier to write, I start with the first day of the first month you ask for and end with last
day in the last month.

Output is written to REFL._CODE/Files/ unless subdir optional input is set Plot is sent to the screen if requested.
Parameters
e station (str) — 7 character ID of the station.

» datel (str) — start date. Example value: 20150101

date2 (str) —end date. Example value: 20150110

* output (string, optional)— Optional output filename default is None

* plt (boolean, optional) - plot comes to the screen default is None

e datum (string, optional) - setto lwd for lakes? default is mllw

* subdir (str, optional) - subdirectory for output in the SREFL_CODE/Files area

gnssrefl.download_noaa.download_qld(station, year, plt)

Parameters
» station (str) — tide gauge station name
* year (int) — calendar year

* plt (bool) — whether you want a plot to the screen

10.1. gnssrefl package 61

gnssrefl

gnssrefl.download_noaa.multimonthdownload (station, datum, fout, yearl, year2, monthl, month2, csv)

downloads NOAA water level measurements > one month

Parameters
e station (str) — NOAA station name
e datum (str) — definition of water level datum
e results (fout - fileID for writing) -
* yearl (int) — year when first measurements will be downloaded
e monthl (integer)— month when first measurements will be downloaded
* year2 (integer) — last year when measurements will be downloaded
e month2 (integer) — last month when measurements will be downloaded
* csv (boolean) — whether output file is csv format

Returns
* tt (list of times) — modified julian day
* obstimes (list of datetime objects)
* slevel (list or is it numpy ??) — water level in meters

gnssrefl.download_noaa.noaa2me (datel)
converts NOAA type of date string to simple integers

Parameters
datel (string) — time in format YYYYMMDD for year month and day

Returns
* yearl (integer) — full year
e monthl (infeger) — month
* dayl (integer) — day of the month
* doy (integer) — day of year
* modjulday (float) — modified julian date

gnssrefl.download_noaa.noaa_command (station, fout, year, monthl, month2, datum, metadata, tt, obstimes,
slevel, csv)

downloads/writes NOAA tidegauge data for one month
Parameters
e station (str) — station name
* year (int) — full year

* monthl (int) — starting month

month2 (int) — ending month

datum (str) — water datum

metadata (bool) — whether you want the metadata printed to the screen

tt (numpy array)-— modified julian date for water measurements

obstimes (numpy array of datetimes)— time of the measurements

62 Chapter 10. APl documentation

gnssrefl

e slevel (numpy array of floats)— water level in meters
* csv (bool) — True if csv output wanted (default is False)
Returns
* tt (numpy array) — modified julian date for water measurements
* obstimes (numpy array) — datetime format, updated with new data
* slevel (numpy array) — sea level (m) updated with new data

gnssrefl.download_noaa.pickup_£from_noaa(station, datel, date2, datum, printmeta)

pickup up NOAA data between datel and date2, which can be longer than one month (NOAA API restriction)

Parameters

e station (str) — station name

datel (str) — beginning time, 20120101 is January 1, 2012
e date2 (str) —end time , same format
» datum (str) — what kind of datum is requested
e printmeta (bool) — print metadata to screen
Returns
* data (dictionary in NOAA format)
* error (bool)

gnssrefl.download_noaa.write_out_data(dara, fout, tt, obstimes, slevel, csv)
writes out the NOAA water level data to a file 20213-mar-27 using new format

Parameters
e data (dictionary from NOAA API) -
» fout (file ID) - for output
e tt—
* obstimes (1ist of datetimes) - times of water level measurements
e slevel (numpy array of floats) - water level in meters
e csv (boolean) — whether csv format or not
Returns
* tt (same as input, but larger)
 obstimes (list of datetimes) — times for waterlevels

* slevel (list of floats) — water levels in meters

10.1. gnssrefl package

63

gnssrefl

gnssrefl.download_orbits module

gnssrefl.download_orbits.download_orbits(orbit: str, year: int, month: int, day: int, doy_end: int = None)

command line interface for download_orbits. If day is zero, then it is assumed that the month record is day or
year

Examples
download_orbits nav 2020 50 0
downloads broadcast orbits for day of year 50 in the year 2020

download_orbits nav 2020 1 1
downloads broadcast orbits for January 1, 2020

download_orbits gnss 2023 1 1
multi-GNSS orbits from GFZ

download_orbits rapid 20231 1
rapid multi-GNSS orbits from GFZ

download_orbits rapid 2023 1 0 -doy_end 10
rapid multi-GNSS orbits from GFZ for days of year 1 thru 10 in 2023
Parameters
» orbit (string) — value options:
gps (default) : uses GPS broadcast orbit

gps+glo : will use JAXA orbits which have GPS and Glonass (usually available in 48
hours)

gnss : will use GFZ orbits, which is multi-GNSS (available in 3-4 days). but taken from
CDDIS archive

nav : GPS broadcast, adequate for reflectometry. Searches various places
nav-sopac : GPS broadcast file from SOPAC, adequate for reflectometry.
nav-esa : GPS broadcast file from ESA, adequate for reflectometry.

nav-cddis : GPS broadcast file from CDDIS, very slow to download

igs : IGS precise, GPS only

igr : IGS rapid, GPS only

jax : JAXA, GPS + Glonass, within a few days, missing block III GPS satellites
gbm : GFZ Potsdam, multi-GNSS, not rapid

grg : French group, GPS, Galileo and Glonass, not rapid

esa : ESA, multi-GNSS

gfr : GFZ rapid, GPS, Galileo and Glonass, since May 17 2021

wum : (disabled) Wuhan, multi-GNSS, not rapid

gnss?2 : multi-GNSS, but uses IGN instead of CDDIS. does not work

gnss3 : multi-GNSS, but uses GFZ archive instead of CDDIS. same as gnss-gfz

ultra : ultra orbits directly from GFZ

64

Chapter 10. APl documentation

gnssrefl

rapid : rapid orbits directly from GFZ
* year (integer) — full year
e month (integer) — calendar month
» day (integer) — day of the month

* doy_end (integer) — optional, allows multiple day download

gnssrefl.download_orbits.main()

gnssrefl.download_orbits.parse_arguments()

gnssrefl.download_psmsl module

gnssrefl.download_psmsl.download_psmsl (station: str, output: str = None, plt: bool = False)

Downloads PSMSL tide gauge files created by Simon Williams in json format, converts it to plain txt or csv
format

Parameters
e station (str) — 4 ch station name
e output (str, optional) - Optional output filename default is None

* plt (bool, optional) - plot comes to the screen

gnssrefl.download_rinex module

downloads RINEX files

gnssrefl.download_rinex.download_rinex(station: str, year: int, month: int, day: int, rate: str = 'low’,
archive: str = "all’, version: int = 2, strip: bool = False, doy_end:
int = None, stream: str = 'R, samplerate: int = 30, screenstats:
bool = False, dec: int = 1, save_crx: bool = False)

Command line interface for downloading RINEX files from global archives. Required inputs are station, year,
month, and day. If you want to use day of year, call it as station, year, doy, 0.

decimate does not seem to do anything, at least not for RINEX 2.11 files

bkg option is changed. now must specify bkg-igs or bkg-euref

Examples
download_rinex mfle 201511
downloads January 1, 2015

download_rinex mfle 2015 52 0
Using day of year instead of month/day:

download_rinex p101 2015 52 0 -archive sopac
checks only sopac archive
Parameters
e station (str) —4 or 9 character ID of the station.

e year (int) — full Year

10.1. gnssrefl package 65

gnssrefl

month (int) — month

day (int) — day of month

rate (str, optional)— sample rate. value options:
low (default) : standard rate data
high : high rate data

archive (str, optional) — Select which archive to get the files from. Default is redi-
rected to all, as defined below. Value options:

cddis : (NASA)
bev : (Austria Federal Office of Metrology and Surveying)
bkg-igs : igs folder of BKG (German Agency for Cartography and Geodesy)
bkg-euref : Euref folder of BKG (German Agency for Cartography and Geodesy)
bfg : (German Agency for water research, only Rinex 3)
ga : (Geoscience Australia)
gfz : (GFZ)
jp : (Japan)
jeff : Jeff Freymueller
nrcan : (Natural Resources Canada)
ngs : (National Geodetic Survey)
nz : (GNS, New Zealand)
sonel : (?)
sopac : (Scripps Orbit and Permanent Array Center)
special : (reflectometry Rinex 2.11 files maintained by unavco)
unavco : now earthscope
all : (searches unavco, sopac, and sonel in that order)
version (int, optional) - Version of Rinex file. Default is 2. Value options 2 or 3

strip (bool, optional)— Whether to strip only SNR observables. Uses teqc or gfzrnx.
Default is False.

doy_end (int, optional)-End day of year to be downloaded. Default is None. (meaning
only a single day using the doy parameter)

stream (str, optional) — Receiver or stream file, for RINEX3 only Default is ‘R’ but
you can set to ‘S’ to get streamed version

samplerate (int, optional)— Sample rate in seconds for RINEX3 only. Default is 30.

screenstats (bool, optional) — provides screen output helpful for debugging Default
is False

dec (int, optional) - some highrate file downloads allow decimation. Default is 1 sec,
i.e. no decimation

save_crx (bool, option)-—saves crx version for Rinex3 downloads. Otherwise they are
deleted.

66

Chapter 10. APl documentation

gnssrefl

gnssrefl.download_rinex.main()

gnssrefl.download_rinex.parse_arguments()

gnssrefl.download_teqc module

download a year of teqc logs from unavco can do multiple years as well 2022 september 15, updated to https access

gnssrefl.download_teqc.download_teqc(station: str, year: int, year_end: int = None)
Download teqc logs from UNAVCO for one (or more) year.

Parameters
e station (string) — 4 character ID of the station
e year (integer) — Year
» year_end (int, optional) - end year.
gnssrefl.download_teqc.main()

gnssrefl.download_teqc.mpfile_unavco (station, year, doy)

picks up teqc log from unavco if it exists stores it in SREFL._CODE / year / mp / station directory does not check
that directory exists. Assumes you previously ran check_directories from the veg library

Parameters
e station (string) — four character station name
* year (integer) —
* doy (integer) — day of year

gnssrefl.download_teqc.parse_arguments()

gnssrefl.download_tides module

gnssrefl.download_tides.download_tides(station: str, network: str, datel: str = None, date2: str = None,
output: str = None, plt: bool = False, datum: str = 'mllw', subdir:
str = None, year: int = None)

Downloads tide gauge data from four different networks (see below)

Output is written to REFL._CODE/Files/ unless subdir optional input is set. Plot is sent to the screen if requested.

Examples
download_tides 8768094 noaa 20210101 20210131
NOAA station 876094

download_tides thul ioc 20210101 20210131
1OC station thul

download_tides 5970026 wsv
WSV station 5970026

download_tides 10313 psmsl
PSMSL station 10313 (downloads one file)

Parameters

10.1. gnssrefl package 67

gnssrefl

e station (str) — station name
* network (str) — name of tide network. Options:
noaa : US NOAA
ioc : UNESCO
wsv : Germany, Wasserstrassen-und Schifffahrtsverwaltung
psmsl : Permanent Service Mean Sea Level
e datel (str, optional) - start date, 20150101, needed for NOAA/IOC
e date2 (str,optional) — end date, 20150110, needed for NOAA/IOC
* output (str, optional) — Optional output filename
* plt (bool, optional) - plot comes to the screen
* datum (str, optional)-— NOAA input, default is mllw
* sensor (str, optional) - setting for [OC

* subdir (str, optional) - subdirectory for output in the SREFL_CODE/Files area

gnssrefl.download_tides.main()

gnssrefl.download_tides.parse_arguments()

gnssrefl.download_unr module

gnssrefl.download_unr.download_unr (station: str)

Command line interface for downloading time series from the University of Nevada Reno website

This code is not actively maintained.

Examples

download_unr p041
download_unr sc02

Parameters
station (str) — 4 character ID of the station name

gnssrefl.download_unr.main()

gnssrefl.download_unr.parse_arguments()

gnssrefl.download_wsv module

gnssrefl.download_wsv.download_wsv (station: str, plt: bool = True, output: str = None)

Downloads and saves WSV (Germany)